1. 地址解析模型评价指标

1.1 总体正确率指标

预测和标准完全一样(各个字段预测值完全一样)

predict ground_truth
[(0, 3, 'city', '上海市'), (3, 7, 'district', '浦东新区'), (7, 10, 'township', '大团镇'), (10, 14, 'road', '永春东路'), (14, 17, 'houseNumber', '53号')] [(0, 3, 'city', '上海市'), (3, 7, 'district', '浦东新区'), (7, 10, 'township', '大团镇'), (10, 14, 'road', '永春东路'), (14, 17, 'houseNumber', '53号')]
[(0, 3, 'city', '上海市'), (3, 7, 'district', '浦东新区'), (7, 10, 'township', '合庆镇'), (10, 11, 'village', '北')] [(0, 3, 'city', '上海市'), (3, 7, 'district', '浦东新区'), (7, 10, 'township', '合庆镇'), (10, 11, 'assist', '北')]

1.2 单个字段正确指标

以house_number为例:

houseNumber_flag houseNumber_detail
①标注非空预测非空且相等 {"标注": [[14, 17, "houseNumber", "53号"]], "预测": [[[14, 17, "houseNumber", "53号"]]]}
标注为空预测为空 {"标注": [], "预测": []}
③标注非空预测非空且不相等 {"标注": [[19, 22, "houseNumber", "35号"]], "预测": [[18, 22, "houseNumber", ")35号"]], "与标注相关的预测": [[[18, 22, "houseNumber", ")35号"]]]}
④标注为空预测非空
⑤标注非空预测为空